The warm interglacial Marine Isotope Stage 31: Evidences from the calcareous nannofossil assemblages at Site 1090 (Southern Ocean)

Patrizia Maiorano a,⁎, Maria Marino a, José-Abel Flores b

a Dipartimento di Geologia e Geofisica, Università di Bari, Via E. Orabona, 4-70125 Bari, Italy
b Departamento de Geología, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain

ARTICLE INFO

Article history:
Received 16 June 2008
Received in revised form 24 February 2009
Accepted 2 March 2009

Keywords:
Southern Ocean
ODP Site 1090
Mid-Pleistocene
Coccolithophores
Paleoceanography

ABSTRACT

Calcareous nannofossil assemblages have been investigated at Ocean Drilling Program (ODP) Site 1090 located in the modern Subantarctic Zone, through the Pleistocene Marine Isotope Stages (MIS) 34–29, between 1150 and 1000 ka. A previously developed age model and new biostratigraphic constraints provide a reliable chronological framework for the studied section and allow correlation with other records. Two relevant biostratigraphic events have been identified: the First Common Occurrence of Reticulofenestra asanoi, distinctly correlated to MIS 31–32; the re-entry of medium Gephyrocapsa at MIS 29, unexpectedly similar to what was observed at low latitude sites. The composition of the calcareous nannofossil assemblage permits identification of three intervals (I–III). Intervals I and III, correlated to MIS 34–32 and MIS 30–29 respectively, are identified as characteristic of water masses located south of the Subtropical Front and reflecting the southern border of Subantarctic Zone, at the transition with the Polar Front Zone. This evidence is consistent with the hypothesis of a northward shift of the frontal system in the early Pleistocene with respect to the present position and therefore a northernmost location of the Subantarctic Front. During interval II, which is correlated to MIS 31, calcareous nannofossil assemblages display the most significant change, characterized by a distinct increase of Syracosphaera spp. and Helicosphaera carteri, lasting about 20 ky. An integrated analysis of calcareous nannofossil abundances and few mineralogical proxies suggests that during interval II, Site 1090 experienced the influence of subtropical waters, possibly related to a southward migration of the Subtropical Front, coupled with an expansion of the warmer Agulhas Current at the core location. This pronounced warming event is associated to a minimum in the austral summer insolation. The present results provide a broader framework on the Mid-Pleistocene dynamic of the ocean frontal system in the Atlantic sector of the Southern Ocean, as well as additional evidence on the variability of the Indian–Atlantic Ocean exchange.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The present study focuses on the response of the Pleistocene calcareous nannofossil assemblages in the interval between Marine Isotope Stage (MIS) 29 and MIS 34, at ODP Site 1090 (Gersonde et al., 1999), located in the eastern subantarctic sector of the Southern Ocean (Fig. 1). The investigated interval is of great interest since it includes MIS 31, which was the last significant warm interglacial of the obliquity-dominated climate regime and which may represent a precursor to the high-amplitude eccentricity-dominated cycles that followed the Mid-Pleistocene climate shift (Scherer et al., 2003; Scherer et al., 2008). The MIS 31 recognition was based on the First Common Occurrence of three intervals (I–III). The last significant warm interglacial interval by Froelich et al. (1991), but it has received very little attention so far. The southward migration of the Polar Front Zone (PFZ) has been inferred in this interval by Froelich et al. (1991) and Westall and Fenner (1991) at the South Atlantic Site 704 (Fig. 1). This hypothesis was based on the distribution of biosiliceous–calcareous composition of sediments, which represents a valuable tracer of the PFZ. More recently, new data collected in the Southern Ocean area, from nearshore deposits located in the McMurdo Sound, Antarctica (Scherer et al., 2003) and from deep-sea sediments recovered at ODP sites 1094 and 1165 (Teitler et al., 2007; Flores and Sierra, 2007; Villa et al., 2008; Scherer et al., 2008) (Fig. 1), pointed out that MIS 31 was a key climate event, which may have compromised the stability of the Antarctic Ice Sheet and produced a southward displacement of the Polar Front in the South Atlantic sector. All the mentioned data on the marine record come from the Antarctic and Polar Front Zones. Site 1090 is located in a northernmost position (42°54.8′S, 8°55.2′E) (Fig. 1), south of the modern Subtropical Front, in the area where the heat exchange between the Indian and South Atlantic oceans occurs (Lutjeharms, 1981, 1996). This region plays a crucial role on the global ocean circulation and on the Earth’s climate system.

In order to reconstruct sea surface water dynamics during the Mid-Pleistocene, the composition of calcareous nannofossil assemblages...
has been investigated at ODP Site 1090. Coccolithophores represent the main group of marine phytoplankton and are widely distributed in the world oceans (Roth, 1994). The composition of their assemblages reflects the horizontal pattern of water masses and therefore they represent a valuable tool to describe the ecological characteristics and the latitudinal boundaries of an investigated area. Several studies document the present distribution of coccolithophores in the South Atlantic Ocean (Eynaud et al., 1999; Findlay and Giraudeau, 2000; Boeckel and Baumann, 2004; Boeckel and Baumann, 2008) and their use as valuable tool for paleoclimatic and paleoceanographic proxy in the Southern Ocean (Okada and Wells, 1997; Flores et al., 1999; Baumann et al., 1999; Giraudeau et al., 2000).

2. Oceanographic setting

The hydrography of the southeastern South Atlantic is strongly determined by the position and flow regime of different zones, separated by a number of fronts (Fig. 1). The latter are characterized by rapid changes in water properties which occur over a short distance.

Site 1090 is located in the middle of the modern Subantarctic Zone (SAZ) which is limited by the Subtropical Front (STF) to the north and by the Subantarctic Front (SAF) to the south (Fig. 1). The STF represents the boundary between warm, salty subtropical surface water and cooler, fresher Subantarctic Surface Water (Deacon, 1937). This front, in the eastern part of the Southern Atlantic, is located at around 40°S (Fig. 1A) and represents the most prominent surface thermal front, with a surface range in temperature and salinity of 17.9–10.6 °C and 35.5–34.3‰ respectively (Belkin and Gordon, 1996). Conversely, the SAF lies at about 46°S and marks the northern boundary of the Polar Front Zone, which is a transitional zone between Subantarctic Surface Water (SASW) and Antarctic Surface Water (AASW) (Fig. 1B); mean temperature and salinity surface values drop from 10.3 to 6.8 °C and 34.36 to 33.88‰ respectively (Belkin and Gordon, 1996).

Site 1090 is located on the southern flank of the Agulhas Ridge (Fig. 1B), at a water depth of 3699 m, near the present-day boundary between North Atlantic Deep Water (NADW) above and Circumpolar Deep Water (CDW) below, and above the calcium-carbonate
compensation depth (CCD). The present location of Site 1090 is influenced by the distal filaments and eddies of the Agulhas Current (AgC, Fig. 2). The latter, which carries warm and salty water into the Southern Ocean, originates in the Indian Ocean and flows poleward along the East African coast. After entering the South Atlantic Ocean as highly energetic eddies or as small meandering filament waters, most of the current retroreflects (Fig. 2) and returns to the Indian Ocean (Agulhas Return Current, AgR) (Lutjeharms, 1981, 1996). The southern boundary of the Agulhas Current system is represented by the Subtropical Convergence (Lutjeharms and Valentine, 1984). The frontal system formed by the Subtropical Convergence Zone and the Agulhas Return Current represents an area of elevated productivity (Cortese et al., 2004).

The transfer of heat and salt from Indian Ocean into the South Atlantic through the Agulhas Current is significant for regional weather and climate patterns (Lutjeharms, 1996; Reason 2001) and plays a key role in the global thermohaline circulation as well (Gordon, 1996). In fact, Agulhas rings, eddies and filaments form the source of the warm upper-layer water that flows northward through the Atlantic, in compensation for the colder southward flowing North Atlantic Deep Water (Gordon et al., 1992; Lutjeharms, 1996). The heat transfer by warm surface water trapped within the Agulhas Current to the atmosphere is believed to be the largest inter-ocean exchange in the Southern Hemisphere. This exchange is strongly related to the wind field over the South-Indian Ocean and to local dynamical processes around South Africa and is known to be variable on a seasonal scale (Lutjeharms, 1996; De Ruijter et al., 1999). The Agulhas water influx in the South Atlantic is favoured by a southward position of the STF (De Ruijter, 1982; Berger and Wefer, 1986). Further, the AgR is sensitive to the volume transport of the AgC (Lutjeharms and van Ballegooijen, 1984; Ou and de Ruijter, 1986). During austral summer, a westward penetration of the AgC into the South Atlantic Ocean, associated to a reduced retroreflection is enabled by the southward migrated STF coupled with the reduced volume transport of the AgC. Few late Quaternary proxy records obtained from cores located close to the southern tip of Africa (Flores et al., 1999; Peeters et al., 2004) revealed that the magnitude of Indian–Atlantic water exchange is modulated on an orbital scale. These records also suggest a well-defined glacial–interglacial cyclicity, with a reduction of Agulhas leakage during glacial, in response to the increased sea ice cover and a northward position of the Subtropical Convergence and frontal zones.

3. Methods

3.1. Calcareous nannofossil analyses

The investigated sediments consist mainly of calcarcous ooze (Gersonde et al., 1999). At Site 1090 calcarcous nannofossil analyses have been performed in the interval from Cores 177–1090D-4H-5 through 4H-3. Samples were collected at about 2–5 cm, corresponding approximately to a temporal resolution of one sample per 1 kyr. Smear slides were prepared from unprocessed samples using standard methodologies (Bown and Young, 1998) and analysed under a polarized light microscope at 1000× magnification. Recent data on the reproducibility and accuracy of calcarcous nannofossils assemblage counts (Blaj and Henderiks, 2007) conclude that smear slides are suitable for generating paleoecological data.

Being the small placoliths (<4 µm in size) an enormous part of the assemblage through most of the investigated interval, quantitative data were firstly collected by counting about 300 total nannofossils >4 µm in size. Although most of the small placoliths (small gephyrocapsids and small reticulofenestrids) are actually <3 µm in size, the separation at 4 µm was fixed in order to have a reliable pattern of the medium Gephyrocapsa group (4–5.5 µm in size), which has a relevant stratigraphic meaning in the Mid-Pleistocene records (Rio et al., 1990). In addition, a separate counting on 300 specimens of the total nannofossil assemblages has been performed in order to evaluate abundance patterns of Florisphaera profunda as suggested by Matsuoka and Okada (1989) and Castradori (1993) and of the dominant placoliths (<4 µm). The number of the nannofossils >4 µm in size has been also recalculated with respect to the total assemblage counts, in order to evaluate the reliability of separate counting methods.

Following Beaufort et al. (2001) and Flores et al. (2000a) the relation between small placoliths and F. profunda has been tentatively considered as a paleoproductivity proxy, although F. profunda is not abundant at the studied site. This proxy has been calculated according to the N index proposed by Flores et al. (2000a):

\[
N = R / (R + F)
\]

where R is % of small placoliths, and F is % of F. profunda. However, the reliability of the N index in this southern region needs to be tested in other sites.

![Fig. 2. Satellite image with the Sea Surface Temperature (SST) distribution in the Agulhas region on March 3rd, 2007. The image shows the expansion of the Agulhas Current in the South Atlantic during austral summer. From the online archive of the 1/32° Global Naval Layered Ocean Model (NLOM) real-time results of the Naval Research Laboratory, modified.](image)
3.2. Principal Component Analyses

A multivariate statistical analyses using Principal Component Analysis (PCA) as extraction method was carried out in order to summarize the relationship between coccoliths distribution and few paleoenvironmental variables. The method allows to reduce a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables called principal components. The software StatView 5.0.1 for Windows was used for this procedure. The involved data sets contain relative abundances of the most common taxa and few mineralogical variables. Within the calcareous nannofossil assemblage, the abundances of medium gephyrocapsids and *R. asanoi* have been omitted since their distribution is stratigraphically controlled. Taxa representing less than 2% of the assemblage (small *C. leptoporus*, *Oolithotus fragilis*, *Pontosphaera* spp., *Umbilicosphaera* spp., *Rhabdosphaera claviger*) have also been excluded. The mineralogical variables from the same samples (Diekmann and Kuhn, 2002), considered in the input matrix, include illite (Ill), kaolinite/chlorite (Kaol/Chl) ratio and quartz/feldspars (Qz/Fsp) ratio and are considered as proxies of regional ocean circulation (Petschick et al., 1996). The contribution of each variable and the explained variance are presented by means of an orthogonal plot where eigenvalues can be deduced from eigenvectors.

4. Results

4.1. Stratigraphy

Site 1090 is chronologically well constrained (Fig. 3) on the basis of δ¹⁸O isotope stratigraphy (Venz and Hodell, 2002) and biostratigraphic data (Flores and Marino, 2002). The latter have been improved in the present study due to the increased sampling resolution (Fig. 3), thus refining the biostratigraphic framework of a key interval at southern mid-latitude settings. Specifically, the First Common Occurrence (FCO) of *R. asanoi* and the re-entry of medium *Gephyrocapsa* have been recorded. *R. asanoi* FCO is distinctly correlated to MIS 31–32 (Fig. 3), in good agreement with data from north Atlantic and Mediterranean sites (Maiorano and Marino, 2004). As discussed by Maiorano and Marino (2004), the different position of the First Occurrence (FO) of *R. asanoi* at MIS 35/34 (Wei, 1993; Flores et al., 2000b; Raffi, 2002) is probably related to different taxonomic criteria adopted by the different authors. The re-entry of medium *Gephyrocapsa* at Site 1090 is recorded close to MIS 29, matching the low latitude records. In fact, the event is known to occur at MIS 29 or 29/28 at low latitudes and at MIS 27–25 at high and mid-latitudes, both in the ocean sites and in the Mediterranean area (Raffi et al., 1993; Wei, 1993; Flores et al., 2000b; Raffi, 2002; Maiorano and Marino, 2004; Raffi et al., 2006). At present, the results from the mid-latitude setting of Site 1090 do not allow confirmation of the above mentioned event’s diachrony.

4.2. Calcareous nannofossil assemblages

Calcareous nannofossils are common through the whole studied section. Biosiliceous fraction is always rare in the smear slides. Nannofossils are in a moderate-good state of preservation and no significant evidence of dissolution is recorded in the studied interval. With regard to the total nannofossil assemblage (Fig. 4), it is evident that small placoliths are the dominant component, generally representing 60–80% and even reaching 90% of the assemblage. Besides the small placoliths, the observed calcareous nannofossil assemblages through most of the studied interval (Fig. 4), appear characterized by *Coccolithus pelagicus* (mostly *C. pelagicus ssp. pelagicus*), *Calcidiscus leptoporus*, mostly represented by the morphotypes of 5–8 μm in size (intermediate type), and subordinately by morphotypes >8 μm in size (larger type) and <5 μm in size (smaller type), *Reticulofenestra* spp. (*R. asanoi*, *Reticulofenestra* sp. sensu Maiorano and Marino, 2004, and *R. minutula*) and *Pseudoemiliania lacunosa* have abundances between 20 and 30% (Fig. 4). Rare components are *Helicosphaera* spp. (mostly *H. carteri*), which constitute nearly 1–2% of the assemblage, although they have an increase during MIS 31, reaching abundances up to 4%
Fig. 4. Abundance patterns of calcareous nannofossils through the studied record. Intervals I–III are traced as discussed in the text. The abundance patterns of all the taxa are presented as % on 300 total nannofossils (black line) and as % on 300 nannofossils >4 µm in size (grey area). The correlation with the isotope chronology of Venz and Hodell (2002) and with the insolation target curve at 42°S (January–February) and of eccentricity of Laskar et al. (2004) is also shown.
(Fig. 4), and Syracosphera spp. (mainly Syracosphera histrionis). Syracosphera spp. are generally very rare (<1%) and shows a trend similar to H. carteri, being more frequent through MIS 31 (Fig. 4). F. profunda is a subordinate component as well and generally represents 1–4% of the assemblage (Fig. 4). Very rare taxa are Umbilicosphaera spp., O. fragilis, R. claviger, that totally represent less than 1% of the assemblage and are only sporadically encountered. The occurrence of medium Gephyrocapsa is stratigraphically restricted to the uppermost part of the studied interval (Fig. 4), in correspondence with MIS 29, where their re-appearance bioevent indicates the small Gephyrocapsa–P. lacunosa zonal boundary of Rio et al. (1990). In this interval the taxon is never abundant and constitutes less than 2% of the assemblage (Fig. 4).

The results obtained from the different counting procedures (Fig. 4) indicate that the abundance patterns obtained from the counting on 300 total nannofossils match with those deriving from 300 nannofossils > 4 µm. However, the counting on 300 nannofossils > 4 µm, although providing an overestimation of the numerical abundances of taxa, highlights more distinctive trends. This is a consequence of the dominant small placoliths component, which prevented identification of a more representative number of those taxa > 4 µm in size. In this context, based on the counting on 300 nannofossils > 4 µm, the studied record can be differentiated in three intervals. Specifically, the first interval (I) corresponds to MIS 34 to 32 and is characterized by Reticulofenestra spp., P. lacunosa, C. leptoporus intermediate type and small placoliths. In addition, F. profunda, although never abundant, shows a consistent occurrence through interval I. The following interval (II) is coincident with MIS 31 and is discriminated by distinctive peaks in abundance of H. carteri and of Syracosphera spp. This interval is characterized by a decrease in abundance of Reticulofenestra spp. and F. profunda and by an increase of small placoliths. An increase of C. pelagicus ssp. pelagicus and C. pelagicus ssp. braarudii is also observed. The third interval (III) corresponds to MIS 30–29 and is dominated by C. pelagicus ssp. pelagicus and small placoliths. In addition, C. leptoporus intermediate type and P. lacunosa are common components of the assemblage. C. pelagicus ssp. braarudii, although never abundant, is continuously present and shows a slight increase throughout this interval. Rare taxa such as C. leptoporus large type, C. leptoporus small type, Umbilicosphaera spp., O. fragilis, R. claviger, do not display any significant pattern through the three intervals. With regard to the N index (Fig. 5) it can be observed how it has a distinct increase from the upper part of interval I upwards.

5. Discussion

5.1. Paleoenvironmental interpretation

We have no evidence of a different state of preservation among samples belonging to different intervals. This feature suggests that the assemblages were not significantly modified by dissolution effect. Small placoliths’ dominance is expected in the studied record, since it reflects a world-wide and well known Mid-Pleistocene paleoeceanographic phenomenon (Gartner, 1977, 1988). With respect to the other important components of the assemblage, such as C. pelagicus and C. leptoporus, it can be remarked that these taxa are generally abundant at high-latitude late Quaternary records (Hiramatsu and De Deckker, 1997). Specifically, C. pelagicus, which is absent from the living community of the Southern Ocean (e.g. Findlay and Giraudeau, 2000), is considered a cold water indicator, ranging from 7–14 °C (McIntyre and Bé, 1967), or 0–10° (Baumann et al., 2000). On the other hand, temperature ranges of C. leptoporus, in the South Atlantic have been estimated at 5.4–14.2 °C (Findlay and Giraudeau, 2000). The taxon is abundant south of 40° (Hiramatsu and De Deckker, 1997) and becomes very rare south of the SAF (Eynaud et al., 1999). In more detail, the C. leptoporus intermediate type has been recorded as the most abundant of the three morphotypes, in all water-depths of the STFZ south of 40° (Boeckel and Baumann, 2008). It dominates over the larger morphotype, as at Site 1090, at low/intermediate water temperatures (Renaud et al., 2002). Considering the above mentioned biogeographic distributions and comparing the composition of the calcareous nannofossil assemblage with the ones recorded in the Southern Ocean (Hiramatsu and De Deckker, 1997; Flores et al., 1999; Findlay and Giraudeau, 2000; Boeckel et al., 2006), we infer that, with the exclusion of MIS 31, the common occurrence of C. leptoporus intermediate type and C. pelagicus ssp. pelagicus are in agreement with water masses located south of the STF. More specifically, the assemblages seem to reflect the southern border of SAZ at the transition with the Polar Front Zone as also suggested by the sporadic occurrences or absence of taxa such as Syracosphera spp., Rhabdosphaera spp., Umbilicosphaera spp., O. fragilis, which are important component of the Subantarctic Zone and very rare or absent in the Polar Front Zone (Eynaud et al., 1999). This interpretation is in good agreement with the assessment of a long-term northward shift of the frontal system in the early Pleistocene (1.83–0.87 Ma) with respect to the present (Becquey and Gersonde, 2002), based on the planktonic foraminifera Sea Surface Temperature record at Site 1090.

According to the calcareous nannofossil abundance patterns, short-term modifications in the sea surface water conditions seem to have occurred through the studied record. In order to better clarify the complex relationship between coccolithophorids and paleoenviron-mental conditions occurring through intervals I–III, a multivariate statistical analyses by means of Principal Component Analysis (PCA) method has been performed (Fig. 6). The abundance of the most common calcareous nannofossil taxa together with illite (III) content, kaolinite/chlorite (Kao/Chl) and quartz/feldspars (Qz/Fsp) ratios from the same samples (Diekmann and Kuhn, 2002) have been considered as variables in the input matrix. These mineralogical variables are considered significant tracers of latitudinal shifts in watermass boundaries (Diekmann et al., 1996; Diekmann and Kuhn, 2002; Diekmann et al., 2003). Specifically, illite represents the major proximal input of clay mineral from southern Africa, while kaolinite and chlorite indicate a more distal input and characterize a small proportion of the clay-mineral assemblage (Petschick et al., 1996). The kaolinite and chlorite content dilutes the dominant terrigenous input of illite-rich material from southern Africa (Diekmann and Kuhn, 2002). Kaolinite mainly originates in deeply weathered soils and rocks of tropical and subtropical Africa and is delivered through fluvial discharge to both the South Atlantic and the Indian Ocean (Diekmann et al., 2003 and references therein). On the other hand, chlorite

![Fig. 5. Oxygen isotope record at Site 1090 and curve of N index.](Image)
represents a typical high-latitude clay mineral, that characterizes the detrital particulate load of Circum Polar Deep Water (CPDW). Cyclic fluctuations of Kao/Chl and Qz/Fsp ratios, with high values during interglacial periods, follow the southward propagation of kaolinite and quartz-rich suspensions entrained in the filaments of the Agulhas Current and within NADW (Petschick et al., 1996; Kuhn and Diekmann, 2002; Diekmann et al., 2003).

The results of the PCA (Fig. 6) indicate that the first component (40% of total variance) groups together Kaol/Chl and Qz/Fsp ratios, H. carteri, Syracosphaera spp. and Reticuloenestra sp. with high positive component loadings, and III content with a negative component loading. C. leptopus (intermediate and large types) displays a low factor score (−0.495) due to its rather uniform pattern through the whole interval. In the 1st component vs. 2nd component plot (Fig. 6), samples from interval I (MIS 31) are distinctly separated from those of intervals I and III and fall in the direction of maximum variation of Kaol/Chl and Qz/Fsp ratios. Based on the relation between clay-mineral assemblage and characteristics of water masses in the studied area, the first component seems to reflect the influx of the warmer Agulhas Current eddies at the core location, which increases during interval II, as well as a far southward injection of NADW. The relation of H. carteri and Syracosphaera spp. with Kaol/Chl and Qz/Fsp ratios and their increase during interval II is also interesting and supports the interpretation mentioned above. Syracosphaera spp., are considered as warm and oligotrophic taxa (McIntyre et al., 1972; Roth and Coulbourn, 1982; Pujos, 1992; Haidar and Thierstein, 1997; Jordan et al., 1996; Flores et al., 1999; Findlay and Giraudou, 2000; Baumann et al., 2004; Ziveri et al., 2004). H. carteri is known to have affinities for warm waters (McIntyre and Bé, 1967, Gard and Backman, 1990; Brand, 1994) and moderately elevated nutrient conditions (Ziveri et al., 1995; Ziveri et al., 2000; Andruleit and Rogalla, 2002; Findlay and Giraudou, 2002; Ziveri et al., 2004). High abundance of H. carteri is recorded during high productivity episodes (Pujos, 1992; Flores et al., 1995) and in upwelling regions (Estrada, 1978; Giraudou, 1992).

Ziveri et al. (2004) clearly show that H. carteri is mainly occurring in the mesotrophic equatorial divergence belt. Positive relations between abundances of Helicosphaera spp. and Syracosphaera spp. with lower salinity and terrigenous input of surface water have been also inferred (Weaver and Pujol, 1988; Flores et al., 1997; Colmenero-Hidalgo et al., 2004; Flores and Sierro, 2007). In spite of their complex paleoecological requirements, it seems significant that in the Southern Ocean these taxa have been associated to warmer intervals (Gard, 1989; Wells and Okada, 1997; Hirats_mutu and De Deckker, 1997, Findlay and Flores, 2000). Furtherly, it is worthy to note that Flores et al. (1999) observed an increase in the abundance of H. carteri and Syracosphaera spp. in the surface sediment calcareous nannofossil assemblages of the Subtropical Convergence/Agulhas Current domain, with respect to the ones of the Subantarctic Zone. It is therefore reasonable to assume that during interval II, the strong positive relation between H. carteri and Syracosphaera spp. with Kaol/Chl and Qz/Fsp reflects the influence, at Site 1090, of the warmer Agulhas Current and a related southward migration of the STF, which probably reached the core location. These data are consistent with a distinct Sea Surface Temperature increase at MIS 31 as recorded by Becquey and Gersonde (2002) at the same site. However the presence of garnet clasts recorded during MIS 31 at Site 1090 (Teitler et al., 2007), and interpreted as a provenance of the rafting iceberg from East Antarctica may suggest that the increase of H. carteri and Syracosphaera spp. is also the result of reduced salinity related to Antarctic ice melting (Flores and Sierro, 2007; Scherer et al., 2008).

The second component (20% of total variance) groups together C. pelagicus and small placoliths with positive component loadings and F. profunda and R. minutula with negative component loadings. A rather low factor score (0.495) is recorded for P. lacunosa as also observed above for C. leptopus for the 1st component. R. minutula does not help to improve the accuracy of the paleoenvironmental interpretation since the ecological requirements of the taxon are poorly known. In the 1st component vs. 2nd component plot (Fig. 6) samples of interval I fall in the maximum direction of F. profunda, while samples of intervals II and III display an increase in C. pelagicus and of small placoliths. In our record (Fig. 4) C. pelagicus is mostly represented by the cold sub-Arctic C. pelagicus ssp. pelagicus and, secondarily, by the temperate C. pelagicus ssp. braarudii which is related to upwelling conditions (Baumann, 1995; Baumann et al., 2000; Cachao and Moita, 2000; Parente et al., 2004; Narciso et al., 2006). However, both the taxa have comparable distribution through time (Fig. 4). Small placoliths, which are essentially represented by small Cephyrocapsa and small reticulofenestrids, are considered opportunistic taxa of the upper photic zone (Gartner et al., 1987; Gartner, 1988; Okada and Wells, 1997), which bloom in surface waters of upwelling areas (Gartner, 1988; Okada and Wells, 1997; Takahashi and Okada, 2000) and indicate eutrophic condition (Gartner et al., 1987; Gartner, 1988; Takahashi and Okada, 2000; Colmenero-Hidalgo et al., 2004; Flores et al., 2005). On the other hand, the deep-photonic zone taxon F. profunda, which thrives in well-stratified, low temperature, nutrient-rich waters, has been used as an indicator of the depth of the nutricline (Okada and Honjo, 1973; Molfino and McIntyre, 1990). Accordingly, higher values of the N index have been interpreted as an indication of higher productivity in the upper photic zone (Flores et al., 2000a; Colmenero-Hidalgo et al., 2004). Therefore, we suggest that the 2nd component may reflect productivity of surface waters, implying a more productive environment during intervals II and III with respect to interval I. The pattern of the N index, showing an increase during intervals II and III (Fig. 5), is in agreement with this interpretation. We infer that the increased productivity was a consequence of the southward frontal displacement. However, the composition of calcareous nannofossil assemblage indicates that the most prominent change occurred during interval II, in response to frontal displacement, influx of warm Agulhas Current and, possibly, to melting processes.

5.2. Paleoceanographic and paleoclimatic implication

The micropaleontological and mineralogical proxies across MIS 34–29 reveal that during MIS 31, a major climate modification affected Site 1090, leading to a southward migration of the STF and to an expansion of the influence of the Agulhas Current at the core location. This phenomenon appears as an amplified climate signal with respect to the normal obliquity-dominated glacial–interglacial cyclicity. The isotope chronology available at Site 1090 lets us compare the results with the insolation curve at 42°S (Laskar et al., 2004), as shown in Fig. 4. The interval II falls within an interval of high-amplitude
insolation variability and of an eccentricity cycle and specifically is mainly centred to an insolation minimum. This result supports the hypothesis of a superimposed insolation forcing on the Agulhas Current variability (Peeters et al., 2004; Cortese et al., 2004) and is consistent with the idea that the lower aurstral summer insolation, together with deglacial warming of MIS 31 at higher latitudes, reduced both meridional temperature gradient and wind forcing as well as the volume transport of the AgC (Pether, 1994). These features may have favoured the westward protrusion of the AgC into the South Atlantic (Ou and de Ruijter, 1986). Our results match with data from core sites located in southern Cape Basin (Peeters et al., 2004), a location which is more sensitive to monitor the increase in the strengthening of the Agulhas leakage. Here, the inter-ocean exchange becomes stronger (increase in mass transport and sharper/earlier retroflection) at the end of each of the last five glacial periods. This pattern is possibly the response to increased strength of the monsoon system that promoted the equatorial transport of warm tropical waters feeding the Agulhas current (Schouten et al., 2002; Peeters et al., 2004). The most distal position of Site 1090 is more sensitive to document major westward protrusion of the AgC in the South Atlantic, rather than strengthening in the inter-ocean leakage. The paleoenvironmental modification recorded at Site 1090 during MIS 31 is well consistent with evidence of an extreme warming event from Antarctic nearshore deposits during MIS 31 (Scherer et al., 2003, 2008), which may have promoted a possible collapse of the Western Antarctic Ice Sheet, with the recognition of a warming event occurring at about 1 Ma in the East Antarctica (Teitler et al., 2007; Villa et al., 2008) and of a southward displacement of the Polar Front at ODP Site 704 (Froelich et al., 1991) and 1094 (Flores and Sierro, 2007). These evidence suggest that this distinct warm event is likely the result of a modification in the poleward heat transport and/or polar amplification of an orbital induced climate event, which may have affected both the stability of the Antarctic ice sheet and the global thermohaline circulation.

6. Conclusion

The quantitative analyses on calcareous nannofossil assemblage at ODP Site 1090 provide a refinement of the biostatigraphic constraints in the Southern Ocean and allow us to recognize significative paleoenvironmental modifications at the Mid-Pleistocene interval through MIS 34–29. Specifically, the FCO of R. asanoi is recorded at MIS 31–32 confirming its high correlation potential. It can be considered a reliable bioevent for the identification of this key interval on a global scale. The re-entry of medium Gephyrocapsa is associated to MIS 29, similarly to low latitude records; therefore, the well known diachrony of this event between the low and the mid-high latitude is not confirmed in the southern hemisphere, from the investigated mid-latitude record. The composition of the calcareous nannofossil assemblages at ODP Site 1090 suggests a northermost location of the SAF during most of the studied interval as previously documented by Becquey and Gersonde (2002) at the same site. A distinct increase in the abundance of H. carteri and of Syracosphaera spp., lasting about 20 ky, within MIS 31, is interpreted as a response to a sea surface warming event and enhanced productivity, possibly accompanied by reduced salinity. Correlation with calcareous nannofossil assemblages known from the Subtropical Convergence/Agulhas Current domain and with few mineralogical proxies at the same site suggests that the recognized sea surface water change can be related to a major expansion of warm eddies and filaments of the Agulhas Current. This signal supports the hypothesis of an insolation forcing on the Agulhas Current variability, superimposed to the normal obliquity-dominated glacial–interglacial cyclicity.

The evidence of this anomalous warming event, previously identified from other Southern Ocean locations, is now highlighted by calcareous nannofossil assemblage at a more distal Site 1090, thus confirming that it was a distinct Mid-Pleistocene paleoclimatic event.

Acknowledgements

We wish to thank the Ocean Drilling Program for providing samples of the investigated site. We also acknowledge Bernard Diekmann who made available the mineralogical data set. The critical reviews of K.-H. Baumann and I. Raffi are greatly acknowledged. This research was financially supported by Fondi di Ateneo, Università di Bari, R. La Perna, 2006.

Appendix A. List of taxa cited in the text

Calcidiscus Kamptner, 1950
C. leptopus (Murray and Blackman, 1898) Loeblich and Tappan, 1978
C. leptopus small (<5 µm), intermediate (5–8 µm) and large (>8 µm) have been differentiated using the morphometric criterion, because other morphological characters are not detectable in LM analysis.

Coccolithus Schwarz, 1894
C. pelagicus (Wallich, 1877) Schiller, 1930 ssp. pelagicus
C. pelagicus ssp. braarudii (Gaarder, 1962) Geisen et al., 2002

Florispheara Okada and Honjo 1973
Florispheara profunda Okada and Honjo, 1973

Gephyrocapsa Kamptner, 1943
G. oceanica s.l. (4 m sensu Río, 1982
G. omega Bukry, 1973

Helicosphaera Kamptner, 1954
H. carteri (Wallich, 1877) Kamptner, 1954
H. hyalina (Gaarder, 1970) Jordan and Young, 1990
H. wallichi, Theodorida, 1984

H. pavimentum (Okada and Mclntyre, 1977)

Helicosphaera granulata (Bukry and Percival, 1971) Jafar and Martini, 1975

H. neogranulata (Gartner, 1977)

Oolithotus Reinhardt in Cohen and Reinhardt, 1968
O. fragilis (Lohmann, 1912) Martini and Müller, 1972

Pontosphaera Lohmann, 1902

Pseudoemiliania Gartner, 1969
P. lacunosa (Kamptner, 1963) Gartner, 1969

small placoliths include placoliths <4 µm in size

Reticulofenestra Hay et al., 1966
R. asanoi Sato and Takayama, 1992
R. minutula (Gartner, 1967) Haq and Berggren, 1978

Reticulofenestra sp. (sensu Maiorano and Marino, 2004)

Rhabdosphaera Haeckel, 1894
R. claviger Murray and Blackman, 1898

Syracosphaera Lohmann, 1902
S. histricha Kamptner, 1941

Umbilicosphaera Lohmann, 1902

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.marmicro.2009.03.002.

References

